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1 L2-Based Elliptic Regularity

1.1 Regularity theory for the Poisson equation

Last time, we discussed solvability for elliptic PDEs. Now we will talk about the regularity
of solutions to elliptic PDEs. Here is a prototypical example.

Example 1.1. Consider the Poisson equation −∆u = f in U , where f ∈ Hk(U) or
Ck,α = {u ∈ Ck(U) : ∂αu ∈ C0,α(U) ∀|α| = k}. The idea is that u should be more regular
than f by order 2. Interior regularity says that for all V ⊆⊆ U (notation meaning V is
bounded and V ⊆ U),

‖u‖Hk+2(V ) ≤ C‖f‖Hk(V ) + C‖u‖L2(U).

Similarly,
‖u‖Ck+2,α(V ) ≤ C‖f‖Ck,α(V ) + C‖u‖L∞(U).

In general, the constant C can depend on the domain V .

The first of these statements is referred to as L2-based regularity theory, and the
second is referred to as Schauder theory. We will think about L2-based regularity theory
for now and discuss Schauder theory later.

For L2-based regularity theory, the key idea is integration by parts (the energy method).1

We will make a simplifying that u ∈ Hk+2(V ); this is not assuming everything because
from this qualitative fact, we will derive a quantitative bound. This assumption allows us
to commute the equation with derivatives. We have not said any assumptions about the
boundary, which may seem like an issue with integration by parts, but this is why we are
discussing interior regularity. We will solve this with a cutoff function.

1Fraydoun Rezakhanlou says that he is an analyst, a PDE-ist, and a probabilist. He is an analyst
because he uses the Cauchy-Schwarz inequality, a probabilist because he uses Chebyshev’s inequality, and
a PDE-ist because he uses integration by parts.
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Let ζ be a nonnegative, smooth cutoff function which equals 1 in V and equals 0 near
∂U . Then (squaring ζ in anticipation of a nice L2 trick),∫

U
fuζ2 dx =

∫
U
−∆uuζ2

=

d∑
j=1

∫
U
∂ju∂j(uζ

2)︸ ︷︷ ︸
∂juζ2+2uζ∂jζ

dx

Note that we have no boundary term in the integration by parts thanks to ζ.

=
d∑
j=1

∫
(∂ju)2ζ2 + 2∂juuζ∂jζ dx.

Rearrange this to get∫
U
|Du|2ζ2 dx ≤

∣∣∣∣∫
U
fuζ2 dx

∣∣∣∣+ 2

∣∣∣∣∫
U
uζDu ·Dζ dx

∣∣∣∣︸ ︷︷ ︸
≤2(

∫
U |Du|2ζ2)1/2(

∫
U u

2|Dζ|2 dx)1/2

To control this right term, we use the AM-GM inequality ab ≤ a
2 + b

2 . But we can weight

this by
√
ε on a and 1√

ε
on b to get the inequality ab ≤ εa22 + 1

ε
b2

2 . This bounds

2

(∫
U
|Du|2ζ2

)1/2(∫
U
u2|Dζ|2 dx

)1/2

≤ ε
∫
U
|Du|2ζ2 dx+

1

ε

∫
U
u2|Dζ|2 dx.

Now set ε = 1/2 to absorb the first term to the right hand side.
This gives

1

2

∫
U
|Du|2ζ2 dx ≤

∣∣∣∣∫
U
fuζ2

∣∣∣∣+ 2

∫
U
u2|Dζ|2 dx

≤ ‖f‖L2(U) + ‖u‖L2(U),

and we lower bound the left hand side by 1
2

∫
V |Du|

2 dx. For the actual result, we could
have upgraded the ‖f‖L2(U) to ‖f‖H1(U) by using an additional cutoff argument.

What about higher regularity? Suppose k + 2 = 2. Then if −∆u = f , we get

−∆∂ju = ∂jf,

where ∂ju ∈ H1, so we can do integration by parts. Now apply the case k = 1 to get∫
V
|D∂ju|2 dx ≤

∣∣∣∣∫
U
∂jf∂juζ

2 dx

∣∣∣∣+ ‖∂ju‖L2(U)
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Bound the first term by (using the same AM-GM trick)∣∣∣∣∫
U
f∂2j uζ

2 dx

∣∣∣∣ ≤ 1

4ε

∫
U
f2ζ2 dx+ ε

∫
U
|∂ju|2ζ2 dx.

Absorb the second term to the right hand side to get∫
U
|D∂ju|2ζ2 dx ≤ C

∫
U
f2 dx+ C‖Du‖2L2(U).

We want to change the last term into ‖u‖L2(U). Our tool to do this is the H1 bound we just
proved. But this needs us to have a domain in the interior of U . However, note that if we
define V ⊆⊆W ⊆⊆ U , we can replace this term on the the right hand side by C‖Du‖L2(W ).
Then we use the H1 bound ‖Du‖L2(W ) ≤ ‖f‖L2(U) + ‖u‖L2(U). In conclusion, we get

‖D∂ju‖L2(V ) ≤ C‖f‖L2(U) + C‖u‖L2(U)

for all j. Combined with the H1 bound, this gives the H2 bound

‖u‖H2(V ) ≤ C‖f‖L2(U) + C‖u‖L2(U).

1.2 L2-regularity for elliptic operators

For the full L2-regularity theorem, we have an elliptic operator

Pu = −∂j(aj,k∂ku) + bj∂ju+ cu,

where u : U → R and U is an open subset of Rd. We also assume a(x) � λI for some λ > 0
for all x ∈ U . Also assume a, b, c ∈ L∞(U) (although the natural assumption for d ≥ 3 is
actually a ∈ L∞, b ∈ Ld, c ∈ Ld/2). For the H2 bound, we also make the assumption that
∂a ∈ L∞(U); this comes from the fact that if we want to commute the derivative as in the
argument above, we must be able to deal with the derivative of the coefficients ai,j .

Theorem 1.1 (H2 elliptic regularity). Let u ∈ H1(U) be a weak solution to Pu = f on
U , and let f ∈ L2(U). Then for all V ⊆⊆ U , u ∈ H2(V ), and

‖u‖H2(V ) ≤ C(‖f‖L2(U) + ‖u‖L2(U)).

The proof of this theorem is the same as the previous argument but with some minor
adjustments. The main step is integration by parts. Formally,∫

U
−∂j(aj,k∂kv)vζ2 dx =

∫
U
aj,k∂kv∂jvζ

2 dx+

∫
U
aj,k∂kvvζ∂jζ dx

≥ λ
∫
U
|Du|2ζ2 dx− ‖a‖L∞ ·

∫
|Du|ζ|v||Dζ| dx︸ ︷︷ ︸

≤λ
2

1
‖a‖L∞ |Dv|

2ζ2+ 1
λ
‖a‖L∞ |v|2|Dζ|2
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≥ λ

2

∫
U
|Dv|2ζ2 dx−

‖a‖2L∞

λ

∫
U
|v|2|Dζ|2 dx.

Since we do not know a priori that u ∈ H2(V ), need to modify the proof idea to
commute the equation with difference quotients instead of derivatives.

Definition 1.1. If k ∈ {1, . . . , d} and h ∈ R \ {0}, the difference quotient is

Dh
kv(x) =

v(x+ hek)− v(x)

h
.

This converges to ∂kv(x) as h→ 0.

Proof. Step 0: Note that for u ∈ H1(U),

Pu = f in U ⇐⇒ 〈Pu, ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ C∞c (U)

Here, Pu ∈ H−1(U), f ∈ L2 ⊆ H−1.

⇐⇒ 〈Puϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ H1
0 (U) (= (H−1(U))∗)

When we did our a priori estimate last time, we used approximation of u by smooth
functions. However, here, we want to show that we have extra regularity, so the equivalent
of approximation is this step above.

⇐⇒
∫
U
aj,k∂ju∂kϕ+ bj∂juϕ+ cuϕ dx =

∫
U
fϕ dc ∀ϕ ∈ H1

0 (U).

Step 1: Now commute the equation with Dh
j . Note that the Leibniz rule holds:

Dh
h(uv)(x) = Dh

j u(x)v(x) + u(x+ h)Dh
j v(x).

This comes from

uv(x+ h)− uv(x) = (u(x+ h)− u(x))v(x) + u(x+ h)︸ ︷︷ ︸
=:uh(x)

(v(x+ h)− v(x)).

Now

Dh
j f = Dh

j (−∂jaj,k∂ku+ bj∂ju+ cu)

= −∂`(ah)j,k∂kD
h
j u+ (bh)j∂`D

h
j u+ chDh

j u− ∂`(Dha)`,k∂ku+ (Dh
j b)

`∂`u+Dh
j cu.

Rearrange this as
−∂`((ah)`,k∂kD

h
j u) = f̃h1 ,

where fh1 is everything else. Now

〈−∂`(ah)`,k∂kD
h
j u, ϕ〉 = 〈f̃h1 , ϕ〉 ∀ϕ ∈ H1

0 (U),
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where the left hand side equals ∫
(ah)`,k∂k(D

h
j )u∂`ϕdx.

Step 2: “ϕ = ∂juζ
2”: Choose ϕ = Dh

j ζ
2 ∈ H1

0 (U). By the integration by parts idea,
we get

λ

2

∫
U
|DDh

j u|2ζ2 dx ≤ · · · f̃1Dh
j u.

One treats the right hand side like before, treating Dh
j u like ∂ju. To make this precise, we

need the following lemma:

Lemma 1.1 (from Ch 5 in Evans). Let V ⊆⊆ U .

1. If u ∈W 1,p, ‖Dh
j u‖Lp(V ) ≤ C‖∂ju‖Lp(U) for |h| � 1.

2. Assume u ∈ Lp. For h� 1, if ‖Dh
j u L

p(V ) ≤ A, then ∂j ∈ Lp, and ‖∂ju‖Lp(V ) ≤ A.

This finishes off the proof.
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